/* The guts of the Reed-Solomon decoder, meant to be #included * into a function body with the following typedefs, macros and variables supplied * according to the code parameters: * data_t - a typedef for the data symbol * data_t data[] - array of NN data and parity symbols to be corrected in place * retval - an integer lvalue into which the decoder's return code is written * NROOTS - the number of roots in the RS code generator polynomial, * which is the same as the number of parity symbols in a block. Integer variable or literal. * NN - the total number of symbols in a RS block. Integer variable or literal. * PAD - the number of pad symbols in a block. Integer variable or literal. * ALPHA_TO - The address of an array of NN elements to convert Galois field * elements in index (log) form to polynomial form. Read only. * INDEX_OF - The address of an array of NN elements to convert Galois field * elements in polynomial form to index (log) form. Read only. * MODNN - a function to reduce its argument modulo NN. May be inline or a macro. * FCR - An integer literal or variable specifying the first consecutive root of the * Reed-Solomon generator polynomial. Integer variable or literal. * PRIM - The primitive root of the generator poly. Integer variable or literal. * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this * undefined for production code * The memset(), memmove(), and memcpy() functions are used. The appropriate header * file declaring these functions (usually ) must be included by the calling * program. */ #if !defined(NROOTS) #error "NROOTS not defined" #endif #if !defined(NN) #error "NN not defined" #endif #if !defined(PAD) #error "PAD not defined" #endif #if !defined(ALPHA_TO) #error "ALPHA_TO not defined" #endif #if !defined(INDEX_OF) #error "INDEX_OF not defined" #endif #if !defined(MODNN) #error "MODNN not defined" #endif #if !defined(FCR) #error "FCR not defined" #endif #if !defined(PRIM) #error "PRIM not defined" #endif #if !defined(NULL) #define NULL ((void *)0) #endif #undef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #undef A0 #define A0 (NN) { int deg_lambda, el, deg_omega; int i, j, r, k; data_t u, q, tmp, num1, num2, den, discr_r; data_t lambda[NROOTS + 1], s[NROOTS]; /* Err+Eras Locator poly * and syndrome poly */ data_t b[NROOTS + 1], t[NROOTS + 1], omega[NROOTS + 1]; data_t root[NROOTS], reg[NROOTS + 1], loc[NROOTS]; int syn_error, count; /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */ for (i = 0; i < NROOTS; i++) { s[i] = data[0]; } for (j = 1; j < NN - PAD; j++) { for (i = 0; i < NROOTS; i++) { if (s[i] == 0) { s[i] = data[j]; } else { s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR + i) * PRIM)]; } } } /* Convert syndromes to index form, checking for nonzero condition */ syn_error = 0; for (i = 0; i < NROOTS; i++) { syn_error |= s[i]; s[i] = INDEX_OF[s[i]]; } if (!syn_error) { /* if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ count = 0; goto finish; } memset(&lambda[1], 0, NROOTS * sizeof(lambda[0])); lambda[0] = 1; if (no_eras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = ALPHA_TO[MODNN(PRIM * (NN - 1 - eras_pos[0]))]; for (i = 1; i < no_eras; i++) { u = MODNN(PRIM * (NN - 1 - eras_pos[i])); for (j = i + 1; j > 0; j--) { tmp = INDEX_OF[lambda[j - 1]]; if (tmp != A0) { lambda[j] ^= ALPHA_TO[MODNN(u + tmp)]; } } } #if DEBUG >= 1 /* Test code that verifies the erasure locator polynomial just constructed Needed only for decoder debugging. */ /* find roots of the erasure location polynomial */ for (i = 1; i <= no_eras; i++) { reg[i] = INDEX_OF[lambda[i]]; } count = 0; for (i = 1, k = IPRIM - 1; i <= NN; i++, k = MODNN(k + IPRIM)) { q = 1; for (j = 1; j <= no_eras; j++) if (reg[j] != A0) { reg[j] = MODNN(reg[j] + j); q ^= ALPHA_TO[reg[j]]; } if (q != 0) { continue; } /* store root and error location number indices */ root[count] = i; loc[count] = k; count++; } if (count != no_eras) { printf("count = %d no_eras = %d\n lambda(x) is WRONG\n", count, no_eras); count = -1; goto finish; } #if DEBUG >= 2 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); for (i = 0; i < count; i++) { printf("%d ", loc[i]); } printf("\n"); #endif #endif } for (i = 0; i < NROOTS + 1; i++) { b[i] = INDEX_OF[lambda[i]]; } /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = no_eras; el = no_eras; while (++r <= NROOTS) /* r is the step number */ { /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for (i = 0; i < r; i++) { if ((lambda[i] != 0) && (s[r - i - 1] != A0)) { discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r - i - 1])]; } } discr_r = INDEX_OF[discr_r]; /* Index form */ if (discr_r == A0) { /* 2 lines below: B(x) <-- x*B(x) */ memmove(&b[1], b, NROOTS * sizeof(b[0])); b[0] = A0; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for (i = 0 ; i < NROOTS; i++) { if (b[i] != A0) { t[i + 1] = lambda[i + 1] ^ ALPHA_TO[MODNN(discr_r + b[i])]; } else { t[i + 1] = lambda[i + 1]; } } if (2 * el <= r + no_eras - 1) { el = r + no_eras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for (i = 0; i <= NROOTS; i++) { b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN); } } else { /* 2 lines below: B(x) <-- x*B(x) */ memmove(&b[1], b, NROOTS * sizeof(b[0])); b[0] = A0; } memcpy(lambda, t, (NROOTS + 1)*sizeof(t[0])); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for (i = 0; i < NROOTS + 1; i++) { lambda[i] = INDEX_OF[lambda[i]]; if (lambda[i] != A0) { deg_lambda = i; } } /* Find roots of the error+erasure locator polynomial by Chien search */ memcpy(®[1], &lambda[1], NROOTS * sizeof(reg[0])); count = 0; /* Number of roots of lambda(x) */ for (i = 1, k = IPRIM - 1; i <= NN; i++, k = MODNN(k + IPRIM)) { q = 1; /* lambda[0] is always 0 */ for (j = deg_lambda; j > 0; j--) { if (reg[j] != A0) { reg[j] = MODNN(reg[j] + j); q ^= ALPHA_TO[reg[j]]; } } if (q != 0) { continue; /* Not a root */ } /* store root (index-form) and error location number */ #if DEBUG>=2 printf("count %d root %d loc %d\n", count, i, k); #endif root[count] = i; loc[count] = k; /* If we've already found max possible roots, * abort the search to save time */ if (++count == deg_lambda) { break; } } if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ count = -1; goto finish; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**NROOTS). in index form. Also find deg(omega). */ deg_omega = deg_lambda - 1; for (i = 0; i <= deg_omega; i++) { tmp = 0; for (j = i; j >= 0; j--) { if ((s[i - j] != A0) && (lambda[j] != A0)) { tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])]; } } omega[i] = INDEX_OF[tmp]; } /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count - 1; j >= 0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != A0) { num1 ^= ALPHA_TO[MODNN(omega[i] + i * root[j])]; } } num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = MIN(deg_lambda, NROOTS - 1) & ~1; i >= 0; i -= 2) { if (lambda[i + 1] != A0) { den ^= ALPHA_TO[MODNN(lambda[i + 1] + i * root[j])]; } } #if DEBUG >= 1 if (den == 0) { printf("\n ERROR: denominator = 0\n"); count = -1; goto finish; } #endif /* Apply error to data */ if (num1 != 0 && loc[j] >= PAD) { data[loc[j] - PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])]; } } finish: if (eras_pos != NULL) { for (i = 0; i < count; i++) { eras_pos[i] = loc[i]; } } retval = count; }