gr-satnogs/libfec/sse2bfly27-64.s

211 lines
6.0 KiB
ArmAsm

/* Intel SIMD (SSE2) implementations of Viterbi ACS butterflies
for 64-state (k=7) convolutional code
Copyright 2003 Phil Karn, KA9Q
This code may be used under the terms of the GNU Lesser General Public License (LGPL)
Modifications for x86_64, 2012 Matthias P. Braendli, HB9EGM:
- changed registers to x86-64 equivalents
- changed instructions accordingly
- %rip indirect addressing needed for position independent code,
which is required because x86-64 needs dynamic libs to be PIC
void update_viterbi27_blk_sse2(struct v27 *vp,unsigned char syms[],int nbits) ;
*/
# SSE2 (128-bit integer SIMD) version
# All X86-64 CPUs include SSE2
# These are offsets into struct v27, defined in viterbi27_av.c
.set DP,128
.set OLDMETRICS,132
.set NEWMETRICS,136
.text
.global update_viterbi27_blk_sse2,Branchtab27_sse2
.type update_viterbi27_blk_sse2,@function
.align 16
update_viterbi27_blk_sse2:
pushq %rbp
movq %rsp,%rbp
/* convention different between i386 and x86_64: rsi and rdi belong to called function, not caller */
/* Let's say we don't care (yet) */
pushq %rsi
pushq %rdi
pushq %rdx
pushq %rbx
movq 8(%rbp),%rdx # edx = vp
testq %rdx,%rdx
jnz 0f
movq -1,%rax
jmp err
0: movq OLDMETRICS(%rdx),%rsi # esi -> old metrics
movq NEWMETRICS(%rdx),%rdi # edi -> new metrics
movq DP(%rdx),%rdx # edx -> decisions
1: movq 16(%rbp),%rax # eax = nbits
decq %rax
jl 2f # passed zero, we're done
movq %rax,16(%rbp)
xorq %rax,%rax
movq 12(%rbp),%rbx # ebx = syms
movb (%rbx),%al
movd %rax,%xmm6 # xmm6[0] = first symbol
movb 1(%rbx),%al
movd %rax,%xmm5 # xmm5[0] = second symbol
addq $2,%rbx
movq %rbx,12(%rbp)
punpcklbw %xmm6,%xmm6 # xmm6[1] = xmm6[0]
punpcklbw %xmm5,%xmm5
pshuflw $0,%xmm6,%xmm6 # copy low word to low 3
pshuflw $0,%xmm5,%xmm5
punpcklqdq %xmm6,%xmm6 # propagate to all 16
punpcklqdq %xmm5,%xmm5
# xmm6 now contains first symbol in each byte, xmm5 the second
movdqa thirtyones(%rip),%xmm7
# each invocation of this macro does 16 butterflies in parallel
.MACRO butterfly GROUP
# compute branch metrics
movdqa (Branchtab27_sse2+(16*\GROUP))(%rip),%xmm4
movdqa (Branchtab27_sse2+32+(16*\GROUP))(%rip),%xmm3
pxor %xmm6,%xmm4
pxor %xmm5,%xmm3
# compute 5-bit branch metric in xmm4 by adding the individual symbol metrics
# This is okay for this
# code because the worst-case metric spread (at high Eb/No) is only 120,
# well within the range of our unsigned 8-bit path metrics, and even within
# the range of signed 8-bit path metrics
pavgb %xmm3,%xmm4
psrlw $3,%xmm4
pand %xmm7,%xmm4
movdqa (16*\GROUP)(%esi),%xmm0 # Incoming path metric, high bit = 0
movdqa ((16*\GROUP)+32)(%esi),%xmm3 # Incoming path metric, high bit = 1
movdqa %xmm0,%xmm2
movdqa %xmm3,%xmm1
paddusb %xmm4,%xmm0 # note use of saturating arithmetic
paddusb %xmm4,%xmm3 # this shouldn't be necessary, but why not?
# negate branch metrics
pxor %xmm7,%xmm4
paddusb %xmm4,%xmm1
paddusb %xmm4,%xmm2
# Find survivors, leave in mm0,2
pminub %xmm1,%xmm0
pminub %xmm3,%xmm2
# get decisions, leave in mm1,3
pcmpeqb %xmm0,%xmm1
pcmpeqb %xmm2,%xmm3
# interleave and store new branch metrics in mm0,2
movdqa %xmm0,%xmm4
punpckhbw %xmm2,%xmm0 # interleave second 16 new metrics
punpcklbw %xmm2,%xmm4 # interleave first 16 new metrics
movdqa %xmm0,(32*\GROUP+16)(%rdi)
movdqa %xmm4,(32*\GROUP)(%rdi)
# interleave decisions & store
movdqa %xmm1,%xmm4
punpckhbw %xmm3,%xmm1
punpcklbw %xmm3,%xmm4
# work around bug in gas due to Intel doc error
.byte 0x66,0x0f,0xd7,0xd9 # pmovmskb %xmm1,%ebx
shlq $16,%rbx
.byte 0x66,0x0f,0xd7,0xc4 # pmovmskb %xmm4,%eax
orq %rax,%rbx
movq %rbx,(4*\GROUP)(%rdx)
.endm
# invoke macro 2 times for a total of 32 butterflies
butterfly GROUP=0
butterfly GROUP=1
addq $8,%rdx # bump decision pointer
# See if we have to normalize. This requires an explanation. We don't want
# our path metrics to exceed 255 on the *next* iteration. Since the
# largest branch metric is 30, that means we don't want any to exceed 225
# on *this* iteration. Rather than look them all, we just pick an arbitrary one
# (the first) and see if it exceeds 225-120=105, where 120 is the experimentally-
# determined worst-case metric spread for this code and branch metrics in the range 0-30.
# This is extremely conservative, and empirical testing at a variety of Eb/Nos might
# show that a higher threshold could be used without affecting BER performance
movq (%rdi),%rax # extract first output metric
andq $255,%rax
cmp $105,%rax
jle done # No, no need to normalize
# Normalize by finding smallest metric and subtracting it
# from all metrics. We can't just pick an arbitrary small constant because
# the minimum metric might be zero!
movdqa (%rdi),%xmm0
movdqa %xmm0,%xmm4
movdqa 16(%rdi),%xmm1
pminub %xmm1,%xmm4
movdqa 32(%rdi),%xmm2
pminub %xmm2,%xmm4
movdqa 48(%rdi),%xmm3
pminub %xmm3,%xmm4
# crunch down to single lowest metric
movdqa %xmm4,%xmm5
psrldq $8,%xmm5 # the count to psrldq is bytes, not bits!
pminub %xmm5,%xmm4
movdqa %xmm4,%xmm5
psrlq $32,%xmm5
pminub %xmm5,%xmm4
movdqa %xmm4,%xmm5
psrlq $16,%xmm5
pminub %xmm5,%xmm4
movdqa %xmm4,%xmm5
psrlq $8,%xmm5
pminub %xmm5,%xmm4 # now in lowest byte of %xmm4
punpcklbw %xmm4,%xmm4 # lowest 2 bytes
pshuflw $0,%xmm4,%xmm4 # lowest 8 bytes
punpcklqdq %xmm4,%xmm4 # all 16 bytes
# xmm4 now contains lowest metric in all 16 bytes
# subtract it from every output metric
psubusb %xmm4,%xmm0
psubusb %xmm4,%xmm1
psubusb %xmm4,%xmm2
psubusb %xmm4,%xmm3
movdqa %xmm0,(%rdi)
movdqa %xmm1,16(%rdi)
movdqa %xmm2,32(%rdi)
movdqa %xmm3,48(%rdi)
done:
# swap metrics
movq %rsi,%rax
movq %rdi,%rsi
movq %rax,%rdi
jmp 1b
2: movq 8(%rbp),%rbx # ebx = vp
# stash metric pointers
movq %rsi,OLDMETRICS(%rbx)
movq %rdi,NEWMETRICS(%rbx)
movq %rdx,DP(%rbx) # stash incremented value of vp->dp
xorq %rax,%rax
err: popq %rbx
popq %rdx
popq %rdi
popq %rsi
popq %rbp
ret
.data
.align 16
thirtyones:
.byte 31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31