gr-satnogs/lib/libfec/viterbi615_av.c

296 lines
9.4 KiB
C

/* K=15 r=1/6 Viterbi decoder for PowerPC G4/G5 Altivec vector instructions
* 8-bit offset-binary soft decision samples
* Copyright Mar 2004, Phil Karn, KA9Q
* May be used under the terms of the GNU Lesser General Public License (LGPL)
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <limits.h>
#include "fec.h"
typedef union {
unsigned char c[128][16];
vector unsigned char v[128];
} decision_t;
typedef union {
unsigned short s[16384];
vector unsigned short v[2048];
} metric_t;
static union branchtab615 {
unsigned short s[8192];
vector unsigned short v[1024];
} Branchtab615[6];
static int Init = 0;
/* State info for instance of Viterbi decoder */
struct v615 {
metric_t metrics1; /* path metric buffer 1 */
metric_t metrics2; /* path metric buffer 2 */
void *dp; /* Pointer to current decision */
metric_t *old_metrics,
*new_metrics; /* Pointers to path metrics, swapped on every bit */
void *decisions; /* Beginning of decisions for block */
};
/* Initialize Viterbi decoder for start of new frame */
int init_viterbi615_av(void *p, int starting_state)
{
struct v615 *vp = p;
int i;
if (p == NULL) {
return -1;
}
for (i = 0; i < 2048; i++) {
vp->metrics1.v[i] = (vector unsigned short)(5000);
}
vp->old_metrics = &vp->metrics1;
vp->new_metrics = &vp->metrics2;
vp->dp = vp->decisions;
vp->old_metrics->s[starting_state & 16383] = 0; /* Bias known start state */
return 0;
}
/* Create a new instance of a Viterbi decoder */
void *create_viterbi615_av(int len)
{
struct v615 *vp;
if (!Init) {
int polys[6] = { V615POLYA, V615POLYB, V615POLYC, V615POLYD, V615POLYE, V615POLYF };
set_viterbi615_polynomial_av(polys);
}
vp = (struct v615 *)malloc(sizeof(struct v615));
vp->decisions = malloc(sizeof(decision_t) * (len + 14));
init_viterbi615_av(vp, 0);
return vp;
}
void set_viterbi615_polynomial_av(int polys[6])
{
int state;
int i;
for (state = 0; state < 8192; state++) {
for (i = 0; i < 6; i++) {
Branchtab615[i].s[state] = (polys[i] < 0) ^ parity((2 * state) & abs(
polys[i])) ? 255 : 0;
}
}
Init++;
}
/* Viterbi chainback */
int chainback_viterbi615_av(
void *p,
unsigned char *data, /* Decoded output data */
unsigned int nbits, /* Number of data bits */
unsigned int endstate) /* Terminal encoder state */
{
struct v615 *vp = p;
decision_t *d = (decision_t *)vp->decisions;
int path_metric;
endstate %= 16384;
path_metric = vp->old_metrics->s[endstate];
/* The store into data[] only needs to be done every 8 bits.
* But this avoids a conditional branch, and the writes will
* combine in the cache anyway
*/
d += 14; /* Look past tail */
while (nbits-- != 0) {
int k;
k = (d[nbits].c[endstate >> 7][endstate & 15] & (0x80 >> ((
endstate >> 4) & 7))) ? 1 : 0;
endstate = (k << 13) | (endstate >> 1);
data[nbits >> 3] = endstate >> 6;
}
return path_metric;
}
/* Delete instance of a Viterbi decoder */
void delete_viterbi615_av(void *p)
{
struct v615 *vp = p;
if (vp != NULL) {
free(vp->decisions);
free(vp);
}
}
int update_viterbi615_blk_av(void *p, unsigned char *syms, int nbits)
{
struct v615 *vp = p;
decision_t *d = (decision_t *)vp->dp;
int path_metric = 0;
vector unsigned char decisions = (vector unsigned char)(0);
while (nbits--) {
vector unsigned short symv, sym0v, sym1v, sym2v, sym3v, sym4v, sym5v;
vector unsigned char s;
void *tmp;
int i;
/* Splat the 0th symbol across sym0v, the 1st symbol across sym1v, etc */
s = (vector unsigned char)vec_perm(vec_ld(0, syms), vec_ld(5, syms), vec_lvsl(0,
syms));
symv = (vector unsigned short)vec_mergeh((vector unsigned char)(0),
s); /* Unsigned byte->word unpack */
sym0v = vec_splat(symv, 0);
sym1v = vec_splat(symv, 1);
sym2v = vec_splat(symv, 2);
sym3v = vec_splat(symv, 3);
sym4v = vec_splat(symv, 4);
sym5v = vec_splat(symv, 5);
syms += 6;
for (i = 0; i < 1024; i++) {
vector bool short decision0, decision1;
vector unsigned short metric, m_metric, m0, m1, m2, m3, survivor0, survivor1;
/* Form branch metrics
* Because Branchtab takes on values 0 and 255, and the values of sym?v are offset binary in the range 0-255,
* the XOR operations constitute conditional negation.
* metric and m_metric (-metric) are in the range 0-1530
*/
m0 = vec_add(vec_xor(Branchtab615[0].v[i], sym0v), vec_xor(Branchtab615[1].v[i],
sym1v));
m1 = vec_add(vec_xor(Branchtab615[2].v[i], sym2v), vec_xor(Branchtab615[3].v[i],
sym3v));
m2 = vec_add(vec_xor(Branchtab615[4].v[i], sym4v), vec_xor(Branchtab615[5].v[i],
sym5v));
metric = vec_add(m0, m1);
metric = vec_add(metric, m2);
m_metric = vec_sub((vector unsigned short)(1530), metric);
/* Add branch metrics to path metrics */
m0 = vec_adds(vp->old_metrics->v[i], metric);
m3 = vec_adds(vp->old_metrics->v[1024 + i], metric);
m1 = vec_adds(vp->old_metrics->v[1024 + i], m_metric);
m2 = vec_adds(vp->old_metrics->v[i], m_metric);
/* Compare and select */
decision0 = vec_cmpgt(m0, m1);
decision1 = vec_cmpgt(m2, m3);
survivor0 = vec_min(m0, m1);
survivor1 = vec_min(m2, m3);
/* Store decisions and survivors.
* To save space without SSE2's handy PMOVMSKB instruction, we pack and store them in
* a funny interleaved fashion that we undo in the chainback function.
*/
decisions = vec_add(decisions,
decisions); /* Shift each byte 1 bit to the left */
/* Booleans are either 0xff or 0x00. Subtracting 0x00 leaves the lsb zero; subtracting
* 0xff is equivalent to adding 1, which sets the lsb.
*/
decisions = vec_sub(decisions,
(vector unsigned char)vec_pack(vec_mergeh(decision0, decision1),
vec_mergel(decision0, decision1)));
vp->new_metrics->v[2 * i] = vec_mergeh(survivor0, survivor1);
vp->new_metrics->v[2 * i + 1] = vec_mergel(survivor0, survivor1);
if ((i % 8) == 7) {
/* We've accumulated a total of 128 decisions, stash and start again */
d->v[i >> 3] =
decisions; /* No need to clear, the new bits will replace the old */
}
}
#if 0
/* Experimentally determine metric spread
* The results are fixed for a given code and input symbol size
*/
{
int i;
vector unsigned short min_metric;
vector unsigned short max_metric;
union {
vector unsigned short v;
unsigned short s[8];
} t;
int minimum, maximum;
static int max_spread = 0;
min_metric = max_metric = vp->new_metrics->v[0];
for (i = 1; i < 2048; i++) {
min_metric = vec_min(min_metric, vp->new_metrics->v[i]);
max_metric = vec_max(max_metric, vp->new_metrics->v[i]);
}
min_metric = vec_min(min_metric, vec_sld(min_metric, min_metric, 8));
max_metric = vec_max(max_metric, vec_sld(max_metric, max_metric, 8));
min_metric = vec_min(min_metric, vec_sld(min_metric, min_metric, 4));
max_metric = vec_max(max_metric, vec_sld(max_metric, max_metric, 4));
min_metric = vec_min(min_metric, vec_sld(min_metric, min_metric, 2));
max_metric = vec_max(max_metric, vec_sld(max_metric, max_metric, 2));
t.v = min_metric;
minimum = t.s[0];
t.v = max_metric;
maximum = t.s[0];
if (maximum - minimum > max_spread) {
max_spread = maximum - minimum;
printf("metric spread = %d\n", max_spread);
}
}
#endif
/* Renormalize if necessary. This deserves some explanation.
* The maximum possible spread, found by experiment, for 4-bit symbols is 405; for 8 bit symbols, it's 12750.
* So by looking at one arbitrary metric we can tell if any of them have possibly saturated.
* However, this is very conservative. Large spreads occur only at very high Eb/No, where
* saturating a bad path metric doesn't do much to increase its chances of being erroneously chosen as a survivor.
* At more interesting (low) Eb/No ratios, the spreads are much smaller so our chances of saturating a metric
* by not not normalizing when we should are extremely low. So either way, the risk to performance is small.
* All this is borne out by experiment.
*/
if (vp->new_metrics->s[0] >= USHRT_MAX - 12750) {
vector unsigned short scale;
union {
vector unsigned short v;
unsigned short s[8];
} t;
/* Find smallest metric and splat */
scale = vp->new_metrics->v[0];
for (i = 1; i < 2048; i++) {
scale = vec_min(scale, vp->new_metrics->v[i]);
}
scale = vec_min(scale, vec_sld(scale, scale, 8));
scale = vec_min(scale, vec_sld(scale, scale, 4));
scale = vec_min(scale, vec_sld(scale, scale, 2));
/* Subtract it from all metrics
* Work backwards to try to improve the cache hit ratio, assuming LRU
*/
for (i = 2047; i >= 0; i--) {
vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i], scale);
}
t.v = scale;
path_metric += t.s[0];
}
d++;
/* Swap pointers to old and new metrics */
tmp = vp->old_metrics;
vp->old_metrics = vp->new_metrics;
vp->new_metrics = tmp;
}
vp->dp = d;
return path_metric;
}