gr-satnogs/lib/libfec/viterbi29_av.c

218 lines
6.0 KiB
C

/* K=9 r=1/2 Viterbi decoder for PowerPC G4/G5 Altivec
* Copyright Feb 2004, Phil Karn, KA9Q
* May be used under the terms of the GNU Lesser General Public License (LGPL)
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <sys/sysctl.h>
#include "fec.h"
typedef union {
unsigned char c[256];
vector bool char v[16];
} decision_t;
typedef union {
unsigned char c[256];
vector unsigned char v[16];
} metric_t;
static union branchtab29 {
unsigned char c[128];
vector unsigned char v[8];
} Branchtab29[2];
static int Init = 0;
/* State info for instance of Viterbi decoder */
struct v29 {
metric_t metrics1; /* path metric buffer 1 */
metric_t metrics2; /* path metric buffer 2 */
decision_t *dp; /* Pointer to current decision */
metric_t *old_metrics,
*new_metrics; /* Pointers to path metrics, swapped on every bit */
decision_t *decisions; /* Beginning of decisions for block */
};
/* Initialize Viterbi decoder for start of new frame */
int init_viterbi29_av(void *p, int starting_state)
{
struct v29 *vp = p;
int i;
if (p == NULL) {
return -1;
}
for (i = 0; i < 16; i++) {
vp->metrics1.v[i] = (vector unsigned char)(63);
}
vp->old_metrics = &vp->metrics1;
vp->new_metrics = &vp->metrics2;
vp->dp = vp->decisions;
vp->old_metrics->c[starting_state & 255] = 0; /* Bias known start state */
return 0;
}
void set_viterbi29_polynomial_av(int polys[2])
{
int state;
for (state = 0; state < 128; state++) {
Branchtab29[0].c[state] = (polys[0] < 0) ^ parity((2 * state) & abs(
polys[0])) ? 255 : 0;
Branchtab29[1].c[state] = (polys[1] < 0) ^ parity((2 * state) & abs(
polys[1])) ? 255 : 0;
}
Init++;
}
/* Create a new instance of a Viterbi decoder */
void *create_viterbi29_av(int len)
{
struct v29 *vp;
if (!Init) {
int polys[2] = { V29POLYA, V29POLYB };
set_viterbi29_polynomial_av(polys);
}
if ((vp = (struct v29 *)malloc(sizeof(struct v29))) == NULL) {
return NULL;
}
if ((vp->decisions = (decision_t *)malloc((len + 8) * sizeof(
decision_t))) == NULL) {
free(vp);
return NULL;
}
init_viterbi29_av(vp, 0);
return vp;
}
/* Viterbi chainback */
int chainback_viterbi29_av(
void *p,
unsigned char *data, /* Decoded output data */
unsigned int nbits, /* Number of data bits */
unsigned int endstate) /* Terminal encoder state */
{
struct v29 *vp = p;
decision_t *d;
if (p == NULL) {
return -1;
}
d = (decision_t *)vp->decisions;
/* Make room beyond the end of the encoder register so we can
* accumulate a full byte of decoded data
*/
endstate %= 256;
/* The store into data[] only needs to be done every 8 bits.
* But this avoids a conditional branch, and the writes will
* combine in the cache anyway
*/
d += 8; /* Look past tail */
while (nbits-- != 0) {
int k;
k = d[nbits].c[endstate] & 1;
data[nbits >> 3] = endstate = (endstate >> 1) | (k << 7);
}
return 0;
}
/* Delete instance of a Viterbi decoder */
void delete_viterbi29_av(void *p)
{
struct v29 *vp = p;
if (vp != NULL) {
free(vp->decisions);
free(vp);
}
}
int update_viterbi29_blk_av(void *p, unsigned char *syms, int nbits)
{
struct v29 *vp = p;
decision_t *d;
int i;
if (p == NULL) {
return -1;
}
d = (decision_t *)vp->dp;
while (nbits--) {
vector unsigned char sym1v, sym2v;
void *tmp;
/* All this seems necessary just to load a byte into all elements of a vector! */
sym1v = vec_perm(vec_ld(0, syms), vec_ld(1, syms), vec_lvsl(0,
syms)); /* sym1v.0 = syms[0]; sym1v.1 = syms[1] */
sym2v = vec_splat(sym1v, 1); /* Splat syms[1] across sym2v */
sym1v = vec_splat(sym1v, 0); /* Splat syms[0] across sym1v */
syms += 2;
for (i = 0; i < 8; i++) {
vector bool char decision0, decision1;
vector unsigned char metric, m_metric, m0, m1, m2, m3, survivor0, survivor1;
/* Form branch metrics */
metric = vec_avg(vec_xor(Branchtab29[0].v[i], sym1v),
vec_xor(Branchtab29[1].v[i], sym2v));
metric = vec_sr(metric, (vector unsigned char)(3));
m_metric = (vector unsigned char)(31) - metric;
/* Add branch metrics to path metrics */
m0 = vec_adds(vp->old_metrics->v[i], metric);
m3 = vec_adds(vp->old_metrics->v[8 + i], metric);
m1 = vec_adds(vp->old_metrics->v[8 + i], m_metric);
m2 = vec_adds(vp->old_metrics->v[i], m_metric);
/* Compare and select first set */
decision0 = vec_cmpgt(m0, m1);
decision1 = vec_cmpgt(m2, m3);
survivor0 = vec_min(m0, m1);
survivor1 = vec_min(m2, m3);
/* Interleave and store decisions and survivors */
d->v[2 * i] = vec_mergeh(decision0, decision1);
d->v[2 * i + 1] = vec_mergel(decision0, decision1);
vp->new_metrics->v[2 * i] = vec_mergeh(survivor0, survivor1);
vp->new_metrics->v[2 * i + 1] = vec_mergel(survivor0, survivor1);
}
d++;
/* renormalize if necessary */
if (vp->new_metrics->c[0] >= 50) {
int i;
vector unsigned char scale0, scale1;
/* Find smallest metric and splat */
scale0 = vp->new_metrics->v[0];
scale1 = vp->new_metrics->v[1];
for (i = 2; i < 16; i += 2) {
scale0 = vec_min(scale0, vp->new_metrics->v[i]);
scale1 = vec_min(scale1, vp->new_metrics->v[i + 1]);
}
scale0 = vec_min(scale0, scale1);
scale0 = vec_min(scale0, vec_sld(scale0, scale0, 8));
scale0 = vec_min(scale0, vec_sld(scale0, scale0, 4));
scale0 = vec_min(scale0, vec_sld(scale0, scale0, 2));
scale0 = vec_min(scale0, vec_sld(scale0, scale0, 1));
/* Now subtract from all metrics */
for (i = 0; i < 16; i++) {
vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i], scale0);
}
}
/* Swap pointers to old and new metrics */
tmp = vp->old_metrics;
vp->old_metrics = vp->new_metrics;
vp->new_metrics = tmp;
}
vp->dp = d;
return 0;
}